Publications

  1. Ergo: An open-source program for linear-scaling electronic structure calculations,
    Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia Kruchinina,
    SoftwareX 7, 107 (2018).

  2. On-the-Fly Computation of Frontal Orbitals in Density Matrix Expansions,
    Anastasia Kruchinina, Elias Rudberg, and Emanuel H. Rubensson,
    J. Chem. Theory Comput. 14, 139 (2018).

  3. Parameterless stopping criteria for recursive density matrix expansions,
    Anastasia Kruchinina, Elias Rudberg, and Emanuel H. Rubensson,
    J. Chem. Theory Comput. 12, 5788 (2016).

  4. Interior eigenvalues from density matrix expansions in quantum mechanical molecular dynamics,
    Emanuel H. Rubensson and Anders M. N. Niklasson,
    SIAM J. Sci. Comput. 36, B147 (2014).

  5. Controlling errors in recursive Fermi–Dirac operator expansions with applications in electronic structure theory,
    Emanuel H. Rubensson,
    SIAM J. Sci. Comput. 34, B1 (2012).

  6. Comment on "On the optimal symmetric purification scheme of the one-particle density matrix" [Chem. Phys. Lett. 511 (2011) 159–160],
    Emanuel H. Rubensson,
    Chem. Phys. Lett. 527, 84 (2012).

  7. Difficulties in applying pure Kohn–Sham density functional theory electronic structure methods to protein molecules,
    Elias Rudberg,
    J. Phys.: Condens. Matter 24, 072202 (2012).

  8. Nonmonotonic recursive polynomial expansions for linear scaling calculation of the density matrix,
    Emanuel H. Rubensson,
    J. Chem. Theory Comput. 7, 1233 (2011).

  9. Methods for Hartree–Fock and density functional theory electronic structure calculations with linearly scaling processor time and memory usage,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    in Linear-scaling techniques in computational chemistry and physics: methods and applications, pp 263-300, Springer, Dordrecht, The Netherlands, 2011.

  10. Assessment of density matrix methods for linear scaling electronic structure calculations,
    Elias Rudberg and Emanuel H. Rubensson,
    J. Phys.: Condens. Matter 23, 075502 (2011).

  11. Bringing about matrix sparsity in linear-scaling electronic structure calculations,
    Emanuel H. Rubensson and Elias Rudberg,
    J. Comput. Chem. 32, 1411 (2011).

  12. Kohn−Sham Density Functional Theory Electronic Structure Calculations with Linearly Scaling Computational Time and Memory Usage,
    Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
    J. Chem. Theory Comput. 7, 340 (2011).

  13. Truncation of small matrix elements based on the Euclidean norm for blocked data structures,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    J. Comput. Chem. 30, 974 (2009).

  14. Automatic selection of integral thresholds by extrapolation in Coulomb and exchange matrix constructions,
    Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
    J. Chem. Theory Comput. 5, 80 (2009).

  15. Hartree-Fock calculations with linearly scaling memory usage,
    Elias Rudberg, Emanuel H. Rubensson, and Pawel Salek,
    J. Chem. Phys. 128, 184106 (2008).

  16. Density matrix purification with rigorous error control,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    J. Chem. Phys. 128, 074106 (2008).

  17. Rotations of occupied invariant subspaces in self-consistent field calculations,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    J. Math. Phys. 49, 032103 (2008).

  18. A hierarchic sparse matrix data structure for large-scale Hartree-Fock/Kohn-Sham calculations,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    J. Comput. Chem. 28, 2531 (2007).

  19. Sparse Matrix Algebra for Quantum Modeling of Large Systems,
    Emanuel H. Rubensson, Elias Rudberg, and Pawel Salek,
    Proceedings of PARA'06, Springer LNCS 4699, 90 (2007).

  20. Efficient implementation of the fast multipole method,
    Elias Rudberg and Pawel Salek,
    J. Chem. Phys. 125, 084106 (2006).

  21. Systematic sparse matrix error control for linear scaling electronic structure calculations,
    Emanuel H. Rubensson and Pawel Salek,
    J. Comput. Chem. 26, 1628 (2005).